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Abstract. We consider sparse linear systems, where a set of “interior” degrees of freedom have
been eliminated in order to reduce the problem size. This elimination is assumed to be local, so the
“interior” principal sub-matrix is block-diagonal, and the resulting Schur complement is still sparse.
For it to be beneficial, the elimination process should lead to reduced memory requirements, but
equally importantly, it should also result in an algebraic problem that can be solved efficiently. In
this paper we propose a general element reduction approach, and show how the elimination process
can exploit a particular “sub-zonal” discretization to maintain the sparsity of the Schur complement.
We also investigate Algebraic Multigrid (AMG) solution algorithms applied to the reduced problem,
and we discuss the influence of the local elimination on solver-related properties of the matrix, such
as near-nullspace preservation and the availability of stable subspace decompositions. We focus on
BoomerAMG, a parallel variant of classical Ruge-Stüben AMG, applied to scalar diffusion problems
[18], and the Auxiliary-space Maxwell Solver (AMS) for electromagnetic diffusion applications [22]. In
the electromagnetic case, we establish algebraically a reduced version of the HX decomposition from
[19], and consider a modification of the reduction process that targets the singular problems arising in
simulations with pure void (zero conductivity) regions. For scalar diffusion problems, our particular
stencil analysis shows that the reduction has a positive effect on meshes with stretched elements.
We present a number of 2D, 3D and axi-symmetric numerical experiments, which demonstrate that
the combination of an appropriately chosen local elimination with the use of the BoomerAMG and
AMS solvers can lead to significant improvements in the overall solution time.
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1. Introduction. In this paper we consider the algebraic solution of the linear
system

(1.1) Ax = b ,

where A is a sparse matrix arising in the finite element discretization of a given partial
differential equation (PDE). We assume that the matrix A is symmetric and positive
definite (SPD), with the exception of Section 4.3.1, where A is only semi-definite.

Suppose that A is very large and instead of solving (1.1) directly, we are interested
in reducing the problem size by first eliminating some of the unknowns in the linear
system. Specifically, consider the block splitting of A

A =

(
Aii Air

Ari Arr

)

where i stands for the “interior” unknowns, the ones we plan to eliminate, while r
corresponds to the “reduced” (remaining) unknowns, i.e. the ones that will remain
in the matrix after the reduction is complete. A major assumption in our approach
is that the elimination is local, in other words the interior principal sub-matrix Aii is
block-diagonal.
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Leaving the semi-definite case for Section 4.3.1, we have that the matrix Aii is
SPD, so we can define the harmonic extension interpolation matrix

(1.2) P =

(
−A−1

ii Air

I

)
,

and the Schur complement

(1.3) S = Arr −AriA
−1
ii Air = PtAP .

In this notation, the reduced linear system reads

(1.4) Sxr = br ,

where x = Pxr and br = Ptb. An important consequence of the locality of the
elimination process is that the reduced matrix S is sparse. In contrast to other Schur
complement approaches, where only the action of S is implemented, in this paper we
actually assemble S as a sparse matrix. In fact, having access to the individual entries
of S will play a critical role in our solution process.

Specifically, we investigate the reduction from (1.1) to (1.4) in the context of Alge-
braic Multigrid (AMG) for matrices A arising in scalar and electromagnetic diffusion
applications. The central question of our inquiry is:

Can we solve larger problems faster by applying AMG to (1.4) instead of (1.1)?

Since the elimination process will generally create new connections between the
reduced degrees of freedom, the matrix S may actually require more memory for
storage than A, even though its number of unknowns is smaller. This can be especially
problematic in 3D, where unlike in 2D, straightforward reduction approaches may lead
to a significant increase in the number of nonzeros of the Schur complement. We will
address this issue by considering a general element reduction approach in the settings
of a particular “sub-zonal” discretization of interest in the following Section 2. We
will show that exploiting the properties of this “sub-zonal” discretization is crucial to
maintain the sparsity of the Schur complement.

More importantly, we need to investigate the influence of the elimination process
on the AMG-related properties of the matrix, some of which are discussed in the
overview of algebraic multigrid-type solvers given in Section 3. In particular, we will
show in Section 4, that for the considered applications, if AMG works for A, it will also
work for S. This result is especially interesting in the case of electromagnetic problems,
where it is derived based on the proof, in Section 4.3, of a new, reduced version
of the Hiptmair-Xu (HX) decomposition from [19]. We also show in Section 4.2.1
that, somewhat surprisingly, the elimination process can produce discretizations with
improved multigrid properties for 2D problems on stretched grids.

The above considerations will allow us to ultimately give a positive answer to the
central question of our inquiry. This will also be demonstrated by the performance
of the solvers on 2D, 3D and axi-symmetric problems presented in the numerical
experiments in Section 5.

1.1. Related Approaches. Our reduction approach is closely related to the
method of static condensation and other elimination algorithms corresponding to
different choices of P in (1.2). We review some of these related approaches below,
skipping less relevant methods, such as non-overlapping domain decomposition [31,
26], where the Schur complement is dense and is not assembled. We remark that there
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have been other algebraic solvers for Schur complement matrices, such as the AMLI
method [39], which however require access to the original matrix A.

The classical static condensation algorithm of Wilson [41] was introduced in 1974
to “eliminate the internal degrees of freedom in a quadrilateral finite element con-
structed from four triangles”. Nowadays, static condensation is frequently used to
eliminate the geometrically interior degrees of freedom in high-order finite element
discretizations, see e.g., [36, §3.5.9] [27]. A critical property of static condensation is
that the reduced matrix S has the same sparsity pattern as the principal sub-matrix
Arr, and therefore the solution of (1.4) always requires less memory than that of (1.1).
Since the number of nonzeros of the matrix S will increase in the applications that
we consider, we prefer to think of our elimination scheme as an element reduction
approach (see Section 2.1) instead of a generalized type of static condensation.

Schur complement reduction, especially in the form of static condensation, has
been applied in many areas of scientific computing, including mimetic discretizations
for diffusion problems on generalized polyhedral meshes [8], hp-adaptive refinement
for elliptic equations [27], discontinuous Galerkin methods [17] and physics-based
preconditioning in magnetohydrodynamics (MHD) [15]. In a number of cases, AMG
was used for solving the condensed system, leading to the central problem of interest
in this paper. Frequently, AMG was reported to work well in practice, but we are
not aware of any published attempts for analysis of its performance on the Schur
complement, especially in the case of electromagnetic problems. We undertake this
task in the main portion of the paper presented in Section 4.

Another vein of research has been exploring approximate Schur complements,
which have been used e.g., in reservoir simulations, and in fact AMG itself has been
described as “an approximate Schur complement approach” [37]. Over the years,
AMG researchers have also employed approximate local elimination of degrees of
freedom, where P was not the harmonic extension, but instead was defined by the
local AMG interpolation operator [34]. One example in this direction is [23], where the
“ideal” harmonic extension prolongator is approximated with a sparse matrix derived
by replacing Aii with a diagonal approximation. This idea arises also in energy-
minimization AMG [25] and in multigrid upscaling [6, 24], where the emphasis is on
capturing the homogenized properties of the problem in the interpolation P. In this
paper we focus on the exact Schur complement reduction, and leave other choices of
P for future work.

Finally, we note the cyclic reduction/multigrid research from [16], see also [12],
where it is shown that multigrid converges faster on S for a specific algebraic elim-
ination on a checkerboard colored structured grid. We view the current paper as
an extension of this result to general AMG settings, including electromagnetic prob-
lems. The work from [16] was continued in [42], where a detailed analysis of the
multigrid smoothing efficiency was performed. This is complimentary to the classical
AMG topics we consider in the present paper, which are mostly concerned with the
interpolation operator and the preservation of the near-nullspace.

2. Memory Considerations. In this section we give a detailed description of
our view of the elimination process as a general finite element reduction approach.
We also investigate when this approach results in a matrix S having a smaller number
of nonzero entries than the original matrix A. The number of nonzero entries is
proportional to the memory required for storing the matrix, as well as the number of
floating point operations needed for a matrix-vector multiply.
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(a) Full triangulated mesh (b) Reduced elements (yel-
low) and interior unknowns
(red) identified

(c) Remaining reduced ele-
ments and degrees of free-
dom (blue)

Fig. 2.1. In XY geometry, the full triangular grid has nodal degrees of freedom. The reduced
elements are simply the quadrilateral elements, with the interior degrees of freedom identified at zone
centers. The final reduced mesh has the same number of degrees of freedom and sparsity pattern as
the original quadrilateral grid.

2.1. An Element Reduction Approach. A finite element discretization can
be specified by a set of elements {e}, with corresponding degrees of freedom (dofs)
{xe}, and local element matrices {Ae}, which are assembled to form A. With that
definition in mind, we consider the following 4-step elimination process of local degrees
of freedom, see Figure 2.1 and Figure 2.3 for illustration:

1. Choose a set of reduced elements. Each reduced element E is simply a union
of several neighboring original elements, similar to the agglomerated elements
in the AMGe framework [7, 21]. The set of all reduced elements, {E}, should
provide a non-overlapping decomposition of the original set of elements into
small subdomains.

2. Determine the interior degrees of freedom. For a given reduced element, we
define its interior dofs to be those which do not interact (through the sparsity
pattern of A) with dofs outside of the reduced element.

3. Define the reduced degrees of freedom. The reduced degrees of freedom are
the degrees of freedom on the boundary of the reduced elements.

4. Define the reduced element matrices. The reduced element matrices are the
local Schur complements

SE = Arr,E −Ari,EA
−1
ii,EAir,E = Pt

EAEPE ,

where the subscript E denotes a restriction to the degrees of freedom in the
particular reduced element. These are indeed element matrices, since S can
be assembled from {SE}.

The set of reduced elements is the only input to the above algorithm, so we
can specify the elimination process by simply describing the reduced elements. More
importantly, the output of the algorithm is an induced finite element discretization on
the reduced grid with elements {E}, degrees of freedom {xE}, and element matrices
{SE}. We emphasize that this provides a consistent way of introducing a finite element
discretization on any set of reduced elements, including geometries without a natural
reference element. An example in this direction will be provided in Section 2.2.2.

2.2. A Sub-zonal Discretization. In this section we apply the element reduc-
tion approach to a particular “sub-zonal” finite element discretization of the second-
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Fig. 2.2. The sub-zonal mesh in 2D (left) and 3D (right). In 3D, 24 tetrahedral sub-elements
are added to each hexahedron as show in the center.

order definite Maxwell bilinear form

(2.1) acurl(uh,vh) =

(
∆t

µ
∇× uh,∇× vh

)
+ (σuh,vh)

on a given polyhedral domain Ω. Here, ∆t is the simulation time-step, while σ ≥ 0 and
µ > 0 are the conductivity and the magnetic permeability coefficients, respectively.
We restrict ourselves to finite element functions uh and vh belonging to Vh – the
space of lowest order Nédélec (edge) finite elements [29] [28, §5–§8]. Recall that the
degrees of freedom in Vh are the tangential moments associated with the edges of
the mesh. For simplicity, we assume homogeneous Dirichlet boundary conditions in
Vh, representing a medium surrounded by a perfect conductor. The subscript h is a
reminder that the above quantities are defined on a discrete computational mesh. We
will also use h as a constant, which denotes the (globally quasi-uniform) mesh size,
in Section 3.2.

For generality, we also consider the case of “pure void zones” in (2.1), where σ = 0
in the elements comprising the non-conductive part of the domain. This implies that
the corresponding matrix A will be singular as discussed in Section 4.3.1. A popular
alternative is to set σ to a small positive number in the non-conductive region relative
to its value in the conductor, σnc/σc ≈ 0. This choice produces a significant jump in
the coefficients of acurl(·, ·) and generates a large near-nullspace, which makes A very
challenging for AMG.

We investigate three different PDE models for the above Maxwell problem, which
we denote with XY, RZ and 3D. We will refer to these as modes, or geometries. For
example, the 3D mode corresponds to the regular discretization of acurl(·, ·) in 3D.
The XY and RZ geometries are described below. We sometimes refer collectively to
them as 2D problems.

The XY mode corresponds to a problem with data and solution of the form
uh(x, y, z) = (0, 0, ph(x, y)). The problem can then be reduced to a 2D nodal dis-
cretization of the scalar diffusion bilinear form

(2.2) agrad(ph, qh) =

(
∆t

µ
∇ph,∇qh

)
+ (σph, qh) ,

where ph and qh belong to Sh – the space of linear finite elements on the mesh in the
2D plane orthogonal to the solution. The degrees of freedom are the values at the
vertices of that mesh.
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(a) Full triangulated mesh (b) Reduced elements (yel-
low) and interior unknowns
(red) identified

(c) Remaining (reduced) el-
ements and degrees of free-
dom (blue)

Fig. 2.3. In RZ geometry, the triangular sub-zonal grid has edge degrees of freedom. The
reduced elements are simply the quadrilateral elements. The final reduced mesh has the same number
of degrees of freedom and sparsity pattern as the original quadrilateral grid.

The RZ geometry corresponds to an axi-symmetric problem reduced to a 2D
meridian plane. In this case we get a discretization of the 2D Maxwell bilinear form

(2.3) arz(uh,vh) =

(
r
∆t

µ
∇× uh,∇× vh

)
+ (rσuh,vh) ,

where r is the distance to the axis of rotation, ∇ × uh = −∂ruh + ∂zuh and Vh is
the 2D Nédélec space on the mesh in the meridian plane. As in 3D, the degrees of
freedom are associated with the edges of the mesh.

In the remainder of the paper, we consider a particular radiation hydrodynamics
application [32], which simulates inertial confinement fusion experiments. The hy-
drodynamics discretization uses a compatible algorithm [10, 5], based on a sub-zonal
mesh, obtained by splitting the initial arbitrary polygonal or polyhedral grid into tri-
angular or tetrahedral elements. Recently a resistive MHD package [9] was added to
the code in order to support simulations of Z-pinch experiments at Sandia National
Laboratories. We focus on the electromagnetic linear systems that are solved in this
package in XY, RZ and 3D modes.

In order to be consistent with the hydrodynamics discretization, (2.2), (2.3) and
(2.1) are also discretized on the sub-zonal mesh. In 2D, each sub-triangle is defined
by two consecutive vertices and the element center, while in 3D the tetrahedrons are
defined by connecting the center of each polyhedral element with the center of a face
and two consecutive vertices on that face. This splitting is illustrated in Figure 2.2 for
a quadrilateral and hexahedron. While we have the capability to run on an arbitrary
mesh, all the tests in this paper are run with initial quadrilateral or hexahedral meshes.

2.2.1. Element Reduction in 2D. We first address the elimination process in
the XY and RZ modes of the target application. A natural choice in this case is to
pick the reduced elements to be the original quadrilaterals, as shown in Figure 2.1 and
Figure 2.3. We point out that even though in both cases we recover the associated
quadrilateral mesh, the reduced finite element discretizations are not the ones based
on quadrilateral finite elements, see Section 4.2.1.

In order to measure the reduction in memory, we introduce the notation nrows(A)
and nnz(A) for the number of rows and nonzero entries in a matrix. We also denote
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Fig. 2.4. Hexahedral (left) and octahedral (right) reduced elements in 3D. The octahedral
element spans part of two of the original hexahedrons, and is formed by gluing the eight tetrahedrons
adjacent to the original hexahedral face (yellow). The interior degrees of freedom, which will be
eliminated, are highlighted in red. The remaining reduced degrees of freedom are colored in blue.

with Nz, Nv and Ne the number of quadrilateral elements (a.k.a. zones), vertices and
edges, respectively.

Simple counting of the local balance of nonzero entries in each reduced element
shows that we get memory reduction in both cases: nnz(SXY ) = nnz(AXY )−5Nz and
nnz(SRZ) = nnz(ARZ)− 16Nz.

Table 2.1
Asymptotic estimates for the XY and RZ modes in 2D. The nnz estimates in the third and

fourth columns assume an original structured quadrilateral grid. The last column shows the memory
reduction on general grids.

matrix nrows (reduction) nnz (reduction) nnz/nrows nnz(S)− nnz(A)

AXY 2 Nz 14 Nz 7

SXY Nz (×2) 9 Nz (×1.6) 9 −5 Nz

ARZ 6 Nz 30 Nz 5

SRZ 2 Nz (×3) 14 Nz (×2.1) 7 −16 Nz

To get more qualitative estimates, we assume structured grid and use the rela-
tionships Nz ∼ Nv ∼ 1

2Ne, which follow from asymptotic analysis on quadrilateral
meshes. The results are presented in Table 2.1 and show good reduction in the mem-
ory requirements both in the XY and RZ cases. The savings are especially significant
on RZ structured grids.

2.2.2. Element Reduction in 3D. Next, we consider the elimination process
in the 3D case, where there are a number of possibilities for defining the reduced
elements. We concentrate on two particular choices: the matrix SH , where the reduced
elements are the original hexahedrons, and the matrix SO, which is based on the
octahedral reduced elements that are composed of the eight tetrahedrons adjacent to
each face in the original hexahedral mesh, see Figure 2.4. The octahedral elements
provide an example of a geometry where the direct application of the finite element
method is not straightforward.

Let Nz, Nv, Ne and Nf denote the number of hexahedral elements, vertices,
edges and faces, respectively. Asymptotically, on hexahedral grids we have Nz ∼
Nv ∼ 1

3Ne ∼ 1
3Nf .
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Table 2.2
Asymptotic estimates for the two element reduction options in 3D. The nnz estimates in the

third and fourth columns assume an original structured hexahedral grid. The last column shows the
memory reduction on general grids.

matrix nrows (reduction) nnz (reduction) nnz/nrows nnz(S)− nnz(A)

A 29 Nz 461 Nz 16

SH 15 Nz (×1.9) 1107 Nz (×0.4) 74 +646 Nz

SO 11 Nz (×2.6) 335 Nz (×1.4) 30 −126 Nz

Performing some straightforward calculations one can derive the estimates for the
original and reduced matrices presented in Table 2.2. The hexahedral-based reduction
leads to a significant increase in the number of nonzeros, and unlike in the 2D case,
SH requires more memory than the original matrix. In contrast, the octahedral-based
elimination always results in memory reduction, which asymptotically is comparable
with the XY case on structured grids.

Similar analysis can be performed for all the other possible reduced element
choices, by enumerating what type of edges will be eliminated (element-face, element-
vertex, face-vertex, edge-vertex). This analysis shows that, in fact, the octahedral-
based reduction is the optimal choice with respect to both the problem size and the
memory usage in 3D.

3. Algebraic Multigrid Solvers. In this section we review some of the prop-
erties of AMG methods which will be needed in the following sections. We use the
family of algebraic multigrid solvers, since they provide particularly attractive solution
techniques for the problems described in the previous section, where A is very large,
sparse and badly conditioned due to the jumps in the coefficients and the presence of
both high- and low-frequency eigenvectors in the spectrum of the PDE. Below, we con-
sider two AMG-type solvers targeting scalar and electromagnetic diffusion problems,
respectively.

3.1. Classical AMG. The classical Ruge-Stüben AMG algorithm [35] has been
very successful on matrices arising from nodal discretizations of the scalar diffusion
bilinear form agrad(·, ·). Several efficient and robust implementations of AMG are
currently available, including the parallel solver BoomerAMG in hypre [18, 20], which
has demonstrated robustness with respect to jumps in the coefficients and scalability
on more than 125 thousand processors [13, 2]. Smoothed aggregation [38, 14] is
another viable algebraic solver for (2.2).

A critical component of classical AMG is the knowledge of the near-nullspace
which consists of normalized vectors e satisfying

Ae ≈ 0 .

Typically, a near-nullspace vector e can be approximated locally by a constant, which
is reflected in the construction of AMG interpolation operators and the requirement
that they have row sums of one. Furthermore, it is assumed that e varies smoothly
in the direction of “strong connections”.

The concept of strength of connection forms the foundation of the coarsening and
the interpolation procedures in classical AMG, and is defined as follows: the dof i
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depends strongly on the dof j if

−Aij ≥ θmax
k #=i

{−Aik} .

Here, 0 < θ ≤ 1 is the strength threshold parameter. Note that there are other
definitions for strength of connection, such as the more symmetric version used in the
smoothed aggregation algorithm, but we focus on classical AMG and will later refer
to the θ parameter given above.

3.2. Auxiliary-space Maxwell Solver (AMS). Traditionally, electromag-
netic diffusion problems described by the second-order definite Maxwell forms acurl(·, ·)
and arz(·, ·) have been challenging for classical AMG due to the large number of
locally-supported gradients in their near-nullspaces. Even though the research in ex-
tending classical AMG ideas to these problems have met with some success [33, 3],
we choose to focus on the recently developed Auxiliary-space Maxwell Solver (AMS)
[22]. This choice is motivated by the strong theoretical foundation of AMS [19] and
its clear connection to classical AMG for nodal problems. A related approach, based
on compatible discretization principles, can be found in [4].

The AMS algorithm is an example of an algebraic solver that takes advantage of
discretization information. Specifically, AMS targets the lowest order Nédélec finite
element methods in the RZ and 3D cases that were considered in Section 2.2. The
solver is built on the relation between the Nédélec space Vh and the “auxiliary”
nodal linear finite element spaces Sh and Sh ≡ Sd

h, where d = 2 for RZ and d = 3 for
3D. In particular, to characterize the near-nullspace of A, AMS employs two natural
interpolation operators from the nodal spaces into Vh. These operators are illustrated
in Figure 3.1. The first one is the discrete representation of the mapping

ph ∈ Sh *→ ∇ph ∈ Vh ,

which we refer to as the discrete gradient matrix G. Note that G is a simple topological
table describing the edges of the mesh (including their orientation) in terms of the
vertices. The second operator, Π, in Figure 3.1 is the matrix representation of the
Nédélec interpolation operator Πh which transfers linear vector fields zh ∈ Sh into
Vh by computing the corresponding Nédélec degrees of freedom:

Πhzh =
∑

e

(∫

e
zh · te ds

)
Φe .

Here Φe is the basis functions corresponding to edge e with unit tangent te. As
described in [22], Π can be computed from G and the vectors x, y and z providing
the coordinates of the vertices of the mesh (in 3D), since Π = [Πx Πy Πz] with
(Πx)ij = |Gij |(Gx)i/2, (Πy)ij = |Gij |(Gy)i/2 and (Πz)ij = |Gij |(Gz)i/2.

Given the discrete gradient matrix G and the Nédélec interpolation matrix Π (or
the coordinate vectors x, y and z), we can construct various additive and multiplica-
tive AMS methods. For example, AMS can take the following form as an additive
preconditioner:

(3.1) B = R +GBGG
T +ΠBΠ ΠT .

Here R is a point smoother for A (e.g., a sweep of Gauss-Seidel), while BG and BΠ are
classical AMG V-cycles for the variationally-constructed scalar and vector Poisson-
like coarse grid nodal matrices GTAG and ΠTAΠ, respectively. Note that AMS is not
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G Π

Sh Vh Sh

Fig. 3.1. AMS interpolation operators G and Π relating the Nédélec space Vh (center) with
the two nodal auxiliary spaces Sh (left) and Sh (right).

a direct AMG solver for acurl(·, ·), but is instead based on classical AMG sweeps in
the nodal auxiliary subspaces (alternatively AMS can be viewed as an AMG method
with multiple coarse grids). One can also derive multiplicative solver versions, as well
as variants based on related auxiliary spaces. For example, the following 4-subspace
version, proposed in [22], works well in practice

(3.2) B = R +GBGG
T +Πx BΠx Π

T
x +Πy BΠy Π

T
y +Πz BΠz Π

T
z .

Here BΠx is a V-cycle for the matrix ΠT
xAΠx, and similarly for BΠy and BΠz . The

subspace problems in this case are scalar Poisson-like matrices restricted to subsets
of the variables. Indeed, let z = (zx, 0, 0) correspond to the finite element function
zh = (zh,x, 0, 0). On meshes with simplex elements we have ∇× zh ∈ ∇× Vh, so

∇×Πhzh = ∇× zh = (0, ∂zzh,x,−∂yzh,x)

for zh ∈ Sh. Therefore,

(ΠT
xAΠxzx, zx) = acurl(Πhzh,Πhzh) =

(
∆t

µ
∇yzzh,x,∇yzzh,x

)
+ (σΠhzh,Πhzh) ,

so the higher-order term of ΠT
xAΠx is similar to the yz-restricted Laplacian operator

∂2
y + ∂2

z . Hence, it is reasonable to expect that classical AMG will be a good solver
for the subspace problems in (3.2).

In practice, AMS for acurl(·, ·) has shown comparable performance to classical
AMG for agrad(·, ·). This robustness is based on the following fundamental theoretical
result by Hiptmair and Xu [19], see also [30], which provides a general statement about
the structure of the space Vh, similar to the classical Helmholtz decomposition [28,
§7.2.1]. We use the notation f ! g and f " g to denote that f ≤ Cg and f ≥ Cg,
respectively with an absolute constant C.

Theorem 3.1 (HX decomposition). Any uh ∈ Vh can be split into

(3.3) uh = vh +∇ph +Πhzh

where vh ∈ Vh, ph ∈ Sh and zh ∈ Sh satisfy

h−1‖vh‖0 + ‖zh‖1 ! ‖∇ × uh‖0 , ‖∇ph‖0 ! ‖uh‖0 .

Without going into details, we note that (3.1) simply addresses each of the terms
in (3.3), taking into account that the remainder vh is small. Since ‖Πhzh‖H(curl) !
‖zh‖1, Theorem 3.1 can be used to assert the optimality of AMS in the case of
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constant coefficients µ and σ (provided the subspace solvers are optimal). However,
we are interested in problems with variable coefficients, so we switch to a new, purely
matrix perspective on the HX decomposition, which will be the cornerstone of our
analysis in Section 4.3.

Lemma 3.2 (matrix form of HX). Suppose that the matrix A has the following
properties:

(A) The HX stable decomposition holds in the sense that any vector u can be
decomposed into

u = v + Gp +Πz ,

such that

(DAv, v) + (AGp,Gp) + (AΠz,Πz) ! (Au, u) .

Here DA is the diagonal of A.
(B) Classical AMG is an optimal solver for the nodal subspace matrices GTAG

and ΠTAΠ.
Then AMS is an optimal solver for A.

Proof. Follows from classical Schwarz theory (e.g., applied to (3.1)), and the
fact that point smoothers such as Gauss-Seidel are spectrally equivalent to D−1

A , see
[40, 44]. An analogous result holds for the decomposition corresponding to (3.2).

Note that the matrix form of HX given in condition (A) above corresponds to the
following generalization of Theorem 3.1 to problems with variable coefficients:

(3.4) h−2‖vh‖2∆t
µ

+ ‖vh‖2σ + ‖∇ph‖2σ + ‖∇zh‖2∆t
µ

+ ‖zh‖2σ ! ‖∇ × uh‖2∆t
µ

+ ‖uh‖2σ ,

where the subscripts indicate weighted L2(Ω) inner products. For example, if p and
u are the coefficient vectors for ph and uh, respectively, then

(AGp,Gp) = acurl(∇ph,∇ph) = ‖∇ph‖2σ ! acurl(uh,uh) = (Au, u) .

A similar relation follows for the term involving vh since ‖∇×Φe‖20 ∼ h−2‖Φe‖20 and
‖vh‖2α ∼ h2−d(v, v)α imply

(DAv, v) ∼ h−d(v, v)∆t
µ +h2σ ∼ h−2‖vh‖2∆t

µ
+ ‖vh‖2σ .

Finally, as in AMS, we replace ‖∇zh‖2∆t
µ
+‖zh‖2σ with the variational coarse grid form

‖∇ ×Πhzh‖2∆t
µ

+ ‖Πhzh‖2σ = acurl(zh, zh).

4. AMG Performance on the Reduced Problem. We are now in position
to investigate the performance of AMG applied directly to the reduced problem (1.4).
The main result of this section can be summarized as follows: if classical AMG/AMS
works for A, then it will also work for S.

4.1. Schur Complement Properties. The Schur complement inherits many
solver-friendly properties from the original matrix, see [43] [40, §3.1] [1, §3.2] [26,
§3]. In particular, its condition number is less than or equal to that of A, it can be
assembled locally as was pointed out in Section 2.1, and if A is an M-matrix, so is S.
The latter is of importance in classical AMG, where theory is typically available only
in the M-matrix case. For the definition of M-matrix, see e.g., [1].
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We also have the defining energy minimization property

(4.1) (Sxr, xr) = inf
x|r=xr

(Ax, x) ,

which implies the diagonal inequality

(4.2) DS ≤ DA

where each entry on the left is bounded by the entry on the right corresponding to the
same reduced degree of freedom. These properties will be used later in the analysis
of AMS in Section 4.3/

Assuming that S requires less memory than A, see Section 2, and based on the
above statements, we can generally expect faster matrix-vector multiplies and fewer
solver iterations for the reduced problem (1.4) compared to the original problem
(1.1). This expectation of course, is provided that AMG is equally suitable for both
problems. We investigate this very topic in the following sections.

4.2. Reduced Classical AMG. In this section we prove that the local elimina-
tion process based on harmonic extension preserves the near-nullspace of the problem.
Since the character of the near-nullspace is central to classical AMG, as discussed in
Section 3.1, we conclude that if classical AMG works well on A, it should also work
well on S. Therefore, AMG can be applied directly to the reduced problem in the XY
case.

Lemma 4.1. Consider typical element reduction where the size of the diagonal
blocks in Aii is small and independent of the total problem size. Then, the near-
nullspace of S is precisely the restriction of the near-nullspace of A to the reduced
degrees of freedom. In other words, the reduction process preserves the near-nullspace.

Proof. First we note that due to the local nature of the elimination and the fact
that the reduced elements correspond to small subdomains, the matrix A−1

ii is block-
diagonal with small local blocks which are spectrally equivalent to their diagonals. For
example, these blocks are actually diagonal for the elimination depicted on Figure 2.1.
More generally, for elliptic problems in Rd, a block of Aii can be viewed as the
discretization in the interior of the corresponding reduced element with zero Dirichlet
boundary conditions. This means that each block is a small version of the original
matrix, so if A is n× n with the typical scaling of λmax(A) ∼ 1 and λmin(A) ∼ n− 2

d ,
then for blocks of size m, λmax(Aii) ∼ 1 and λmin(Aii) ∼ m− 2

d ∼ 1.
Therefore,

‖A−1
ii Air‖ ≤ λmax(A)

λmin(Aii)
≤ C ,

where C is a constant depending on the particular choice of reduced elements, but
independent of the global problem size. This implies that ‖er‖ and ‖Per‖ are compa-
rable in the sense that

‖er‖ ≤ ‖Per‖ ! ‖er‖ .

Now, suppose that e is in the near-nullspace of A, i.e. ‖e‖ = 1 and Ae ≈ 0. Then,

Aiiei +Airer ≈ 0

implies e ≈ Per, so

Ser = PtAPer ≈ PtAe ≈ 0 .
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Fig. 4.1. Stretched elements in 2D (left) and 3D (right).

Because ‖e‖ and ‖er‖ are comparable, we conclude that er is in the near-nullspace of
S.

On the other hand, let er be a given vector in the near-nullspace of S. Then, with
e = Per we have

0 ≈ (Ser, er) = (Ae, e) .

Since A is SPD, this implies Ae ≈ 0, which together with ‖e‖ ≈ ‖er‖ means that e is
in the near-nullspace of A.

4.2.1. Meshes with Stretched Elements. Meshes with stretched elements
are a common occurrence in the motivating applications. In 2D the reduction process
from Section 2.2.1 will eliminate badly shaped triangles. In 3D the improvement is
only marginal, see Figure 4.1.

To further investigate the behavior of classical AMG in this case, we perform a
stencil analysis for a model 2D Laplacian, where we set µ = ∆t and σ = 0 in (2.2),
and we discretize using the P1 finite element space on a Cartesian grid with initial
quadrilateral elements having aspect ratios 1/ε. We take the aspect ratio parameter
ε to be small.

After carrying through the local elimination on the triangular grid, we get a 9-
point reduced stencil at the vertices of the original quadrilaterals which is proportional
to

−1 −6 −1

2 12 2

−1 −6 −1

+ ε2
−2 −4 −2

−4 24 −4

−2 −4 −2

+ ε4
−1 2 −1

−6 12 −6

−1 2 −1

.

Therefore, for large stretching (ε ∼ 0), we have

asymptotic reduced P1 stencil ∼
−1 −6 −1

2 12 2

−1 −6 −1

.

This is in contrast to the direct discretization with Q1 elements, where we get a
different 9-point stencil at the same points:

asymptotic Q1 stencil ∼
−1 −4 −1

2 8 2

−1 −4 −1

.

Surprisingly, the reduced P1 stencil on the quadrilateral grid is better for AMG
than the direct Q1 discretization. Indeed, when ε ∼ 0, AMG needs to detect strong
vertical dependence in order to perform the semi-coarsening needed for the robust
solution of this problem, see e.g., [13]. Using the strength threshold parameter θ from
Section 3.1, we see that for θ = 0.25, which is the default value in BoomerAMG,
the reduced stencil considers only the vertical connections to be strong, while the Q1

stencil detects also strong dependence in the diagonal directions. To summarize, the
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artificial introduction and elimination of the interior quadrilateral unknowns leads to
a more robust discretization with respect to classical AMG.

In fact, the reduced stencil will produce the correct AMG coarsening for any
θ > 1/6, when the center of the stencil is in the interior of the computational domain.
Nodes on the Neumann part of the domain boundary have a stencil which leads
to additional restrictions on θ. For example, the reduced stencil needs θ > 1/3 in
order to produce the correct AMG coarsening near the Neumann boundary. The Q1

discretization requires θ > 1/2 in this case.
The original XY stencils are also problematic for AMG, because they are asymp-

totically proportional to

−1 −1

4

−1 −1

and

−1

−1 −1

1 4 1

−1 −1

−1

,

where the stencil on the left corresponds to a node in the center of a quadrilateral
element, and the right stencil is obtained at the vertices of the mesh. Thus, the Schur
complement reduction process has the unexpected benefit of improving the AMG
“strength of connection”-related properties of the matrix on stretched grids.

Similar analysis can also be performed for the subspace Poisson problems in RZ,
with the difference that θ in this case should stay bounded away from one, in order to
preserve the strong vertical dependence near the axis of rotation. Therefore, we can
expect an improved AMG performance on 2D reduced stretched grids.

4.3. Reduced AMS. In this section we show how AMS can be applied to the
reduced matrices corresponding to (2.3) and (2.1), and prove an appropriate reduced
version of the HX decomposition in matrix form. This allows us to conclude that
if AMS works well on A, it will also work well on S, and therefore we can apply it
directly to the reduced problem in the RZ and 3D cases.

First, we note that due to the element reduction nature of the elimination process,
the reduction of edge degrees of freedom implies a reduction in the nodal degrees of
freedom. Specifically, the reduced vertices are simply the vertices of the reduced edges.
With this definition, the discrete gradient matrix can be partitioned as follows:

G =

(
Gii Gir

0 Grr

)
,

where the lower left block is zero, since by definition the reduced edges are not con-
nected to the interior vertices.

Similarly, we have

Π =

(
Πii Πir

0 Πrr

)

with Πrr = [Πrr,xΠrr,yΠrr,z] and (Πrr,x)ij = |(Grr)ij |(Grrxr)i/2, etc. Therefore, Πrr

can still be computed from Grr and the coordinates of the reduced vertices.
By Lemma 4.1, the parts of the near-nullspace of A described by Ran(G) and

Ran(Π) are given by the restriction of the corresponding parts of the near-nullspace
of A, which are clearly Ran(Grr) and Ran(Πrr). Therefore, Grr and Πrr are the
natural reduced versions of the discrete gradient and Nédélec interpolation matrices,
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and we can use them, in principle, to apply AMS directly to S. The question is,
how well is this going to work? The answer lies in a reduced version of the HX
decomposition (3.3), which we consider below.

Lemma 4.2 (reduced HX decomposition). Assume that A has a HX decompo-
sition in matrix form as described in Lemma 3.2 (A). Then the same holds for the
reduced matrix S. In other words, any reduced vector ur can be decomposed into

ur = vr +Grrpr +Πrrzr ,

such that

(DSvr, vr) + (SGrrpr,Grrpr) + (SΠrrzr,Πrrzr) ! (Sur, ur) .

Proof. Fix the vector ur and consider its harmonic extension u = Pur. Applying
the A-based decomposition from Lemma 3.2 (A), we get

u = v + Gp +Πz ,

which by restriction gives us the desired decomposition on the reduced degrees of
freedom:

ur = vr +Grrpr +Πrrzr .

To establish the required stability estimates, we use the definition (1.3), the corre-
sponding estimates for the original matrix, and the energy minimization property
(4.1):

(Sur, ur) = (Au, u) " (AGp,Gp) ≥ (SGrrpr,Grrpr) .

Similarly, since Πp is a (non-harmonic) extension of Πrrpr to the interior edges, we
get the stability estimate of the Π term from (Au, u) " (AΠp,Πp) ≥ (SΠrrpr,Πrrpr).
Finally, the remainder vr is bounded due to the Schur complement diagonal estimate
(4.2) from Section 4.1,

(Sur, ur) " (DAv, v) ≥ (DSvr, vr) .

This completes the proof.
We next focus on the second condition in Lemma 3.2, by showing that the sub-

space problems of the reduced system are close to the Schur complements of the
subspace problems in the original system. To this end, we first define a nodal version
of the harmonic extension operator and establish a commuting diagram property for
certain near-nullspace vectors.

Lemma 4.3. Let

PG =

(
−(GTAG)−1

ii (GTAG)ir
I

)

be the nodal GTAG-based harmonic extension operator. Then

(4.3) PGrrer = GPGer

for any vector e which satisfies

(AGe)i = 0 .
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An analogous result holds for PΠ – the nodal ΠTAΠ-based harmonic extension oper-
ator.

Proof. The equality (4.3) is trivial on the reduced edge degrees of freedom, so we
only need to establish it in the interior edges, where it reads

lhsi := −A−1
ii AirGrrer = −Gii(G

TAG)−1
ii (GTAG)irer +Girer =: rhsi .

Since any vector vi can be uniquely decomposed into gradient and Aii-discretely
divergence free parts,

vi = Giiwi + ui , where wi = (GT
iiAiiGii)

−1GT
iiAiivi and GT

iiAiiui = 0 ,

then it is enough to show that (Aii(rhsi−lhsi),Giiwi) = 0 and (Aii(rhsi−lhsi), ui) =
0. The first identity follows from the fact that

(GTAG)ii = GT
iiAiiGii and (GTAG)ir = GT

iiAiiGir +GT
iiAirGrr ,

so

GT
iiAiirhsi = −GT

iiAirGrr = GT
iiAiilhsi .

For the equality involving ui, note that GT
iiAiiui = 0 and

AG =

(
AiiGii AiiGir +AirGrr

AriGii AriGir +ArrGrr

)

imply

(Aii(rhsi − lhsi), ui) = ((AGPGer)i, ui) = ((AGe)i, ui) = 0 .

We now combine the lemmas into the main result of this section, which ensures
that the AMS convergence properties can be transferred to the Schur complement.

Theorem 4.4. Suppose that AMS is optimal for A in the sense of Lemma 3.2,
i.e. A satisfies conditions (A) and (B) there. Then, the reduced version of AMS based
on Grr and Πrr is also optimal for S in the sense of Lemma 3.2.

Proof. The part regarding condition (A) follows by Lemma 4.2. For condition
(B), note that by Lemma 4.3

(GT
rrSGrrer, er) = (GT

rrP
TAPGrrer, er) = (PT

G(G
TAG)PGer, er) ,

so GT
rrSGrr coincides with the (nodal) Schur complement of GTAG, for vectors sat-

isfying (AGe)i = 0. If this is the case for the reduced near-nullspace vectors, e.g., if
Ge ≈ 0 or if σ is uniformly small, then we can apply Lemma 4.1 and conclude that
classical AMG should work for the above reduced subspace problems. More generally,
we can extend the arguments from the Lemma, as shown below.

Let e be in the near-nullspace of GTAG, then by the above considerations, AGe ≈
0 implies that er is in the near-nullspace of the reduced subspace matrix GT

rrSGrr.
Conversely, a vector in the near-nullspace of GT

rrSGrr satisfies either Grrer ≈ 0 or
ec,r ≈ 0, where ec is the restriction to the part of the domain where σ is not small,
see Section 4.3.1. In the latter case, zero is extended by zero, so ec = (PGer)c ≈ 0.
If Grrer ≈ 0, then e is approximately a constant on the boundary of each reduced
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element, and therefore its nodal harmonic extension will also be close to a constant.
We conclude that GPGer ≈ 0, so e = PGer is in the near-nullspace of GTAG.

Similar arguments can be applied to the subspace matrix ΠT
rrSΠrr which is close

to the Schur complement of ΠTAΠ. For example, if we consider the form (3.2), then a
vector in the near-nullspace of ΠT

rr,xSΠrr,x satisfies either Πrr,xer ≈ 0 or ec,r ≈ const,
since Πx1 = Gx, which is the representation of the constant vector (1, 0, 0) in Vh.
The second case can be handled as above, while Πrr,xer ≈ 0 means that er has a
checkerboard pattern on the edges not parallel to the x direction, so er ≈ 0 due to
the boundary conditions. On meshes with simplex elements, and on the octahedral
grid from Figure 2.4, Πrr,xer ≈ 0 directly implies er ≈ 0 locally.

4.3.1. Problems with Zero-conductivity Regions. We now consider the
case of AMS applied to pure void electromagnetic diffusion problems, where σ = 0 in
the non-conducting part of the domain Ωnc. The original matrix in this case has a
non-trivial nullspace

Ker(A) = Ran(Gnc) ,

where Gnc is the restriction of G to the vertices in the interior of Ωnc. The right-hand
side b should satisfy the compatibility condition

GT
ncb = 0 ,

so that (1.1) has a solution (determined up to a component in the kernel).
One way to stabilize this singular problem is by the introduction of a Lagrange

multiplier leading to a saddle-point linear system [11]. We prefer, however, to work
with the original system and apply AMS directly to A. This can be done by employing
a decomposition in the factor-space Vh/∇(Sh|Ωnc), cf. Corollary 3.2 in [22]. However,
when the problem needs to be solved to a very high-accuracy, e.g., relative reduction
in the residual norm of order 10−14, we can also employ the following more robust
solution procedure:

1. Construct an AMS preconditioner for the non-singular matrix

A + εGncG
T
nc ,

where ε > 0 is a small parameter.
2. Use the above preconditioner in a Krylov iteration for (1.1) with periodic

restrictions onto the compatible subspace Ker(GT
nc) using the projection op-

erator I−Gnc(GT
ncGnc)−1GT

nc.
Note that the above procedure should be used only when necessary, because it is more
expensive than regular AMS due to larger sparsity pattern in the non-conducting
region, and because it requires additional information from the user, namely a list of
the nodes which are interior to the zero-conductivity regions.

Since Step 2 of the solution procedure uses a Krylov iteration for (1.1) we cannot
simply apply the element reduction approach only to the matrix A+δGncGT

nc treated
by AMS. However, performing the reduction directly on A is also problematic, since
Aii may not be invertible. Hence, we need to modify the elimination process for the
“pure void” RZ and 3D cases. We describe the modified procedure that we use in the
numerical experiments below.

Consider a reduced element E in pure void. Then

Ker(Aii,E) = Ran(Gii,E) .
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We therefore replace

(4.4) Aii,E xi,E +Air,E xr,E = bi,E

with the following problem, which is uniquely solvable for the interior dofs (and allows
us to proceed with the local elimination):

(4.5)
(
Aii,E + δGii,E(Gii,E)

T
)
x̃i,E +Air,E xr,E = bi,E .

Here, δ > 0 is a small parameter.
Lemma 4.5. Assume that b is compatible. Then the problems (4.4) and (4.5)

are equivalent in the sense that x̃i,E and xi,E differ by a component in the nullspace
of Aii,E.

Proof. Since (Gii,E)TAii,E = 0 and (Gii,E)Tbi,E = 0, equation (4.4) implies

(Gii,E)
TAir,E xr,E = 0 .

Plugging this into (4.5) gives us

(Gii,E)
TGii,E(Gii,E)

T x̃i,E = 0 ,

so (Gii,E)T x̃i,E = 0. This means that x̃i,E is also locally discretely divergence free
and Aii,E(xi,E − x̃i,E) = 0.

In practice, we simply perform the local elimination in (4.5) instead of (4.4) and
continue with the pure void solution procedure from the beginning of this section.
The addition of δGii,E(Gii,E)T is easy to implement, because it simply updates each
entry of the dense matrix Aii,E with δ, −δ or 2δ. With trivial modifications we can
also handle reduced elements E which are only partially in Ωnc.

Let PA+δGiiGT
ii

be the harmonic extension corresponding to (4.5). Then in the
reduced pure void case we apply AMS to the matrix

PT
A+δGiiGT

ii
APA+δGiiGT

ii
+ εGnc,rrG

T
nc,rr .

Since for small ε and δ this is a small perturbation of the reduced problem in the
factor-space, we expect AMS to work well on this problem.

5. Numerical Results. In this section we present numerical results for the XY,
RZ and 3D modes of the Maxwell problem, that illustrate the theory developed in
the previous sections. In particular, we answer the central question of the paper,
by demonstrating that in all cases we can solve larger problems faster, with typical
speedups of at least a factor of two.

In the following experiments we use the Conjugate Gradient (CG) Krylov solver
with the BoomerAMG and AMS preconditioners from the hypre library [20] applied
in the XY and RZ/3D cases, respectively. The tests were run on the multi-core cluster
Hera at Lawrence Livermore National Laboratory (LLNL).

We used a sweep of symmetric hybrid Gauss-Seidel pre- and post-relaxation in
BoomerAMG (applied to both the XY and the subspace RZ/3D problems) and its
convergent (1 version in AMS. BoomerAMG also used the low-complexity HMIS
coarsening with an extended long-range interpolation, while AMS employed a mul-
tiplicative cycle based on the decomposition (3.2). In the singular case, we set
the values of the perturbation parameters as follows: ε = 10−8 maxi Aii and δ =
10−12 maxkm |(Aii,E)km|.
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Fig. 5.1. The Box problem is a simple test problem that we use to test the effects of varying
solver parameters, material properties, and aspect ratios. The mesh, with sub-zones, is shown on
the left with a high conductivity region shown in red (σc = 1) and a varying low conductivity shown
in blue (0 ≤ σnc ≤ 1). The right figure shows the direction of the magnetic field, with the arrows
colored by field strength.

5.1. Parameter Study - The Box Problem. We start with a simple diffusion
problem posed on a structured box in 3D, see Figure 5.1, with the XY and RZ cases
corresponding to the front and the top sides, respectively. The box is split in two parts,
with the conductivity σ varying between σc = 1 in the material half of the domain
and 0 ≤ σnc ≤ 1 in the non-conducting (void) half. The mesh is initially uniform, but
we stretch it to test the dependence on the aspect ratio. For this problem, we take
∆t/µ = 10−3 and use convergence tolerance of 10−10 in CG.

The properties of the original and the reduced matrices are given in Table 5.1.
Note that we get problem size and memory reduction in accordance with the estimates
in Table 2.1 and Table 2.2.

Table 5.1
Problem size and number of nonzero entries in the original/reduced matrix for the three different

modes of the Box problem. The reduction in the number of nonzeros corresponds to the reduction
in memory requirements.

mode nrows (reduction) nnz (reduction)

XY 33025/16641 (×2.0) 230145/148225 (×1.6)
RZ 98560/33024 (×3.0) 491776/229632 (×2.1)
3D 239260/90460 (×2.6) 3724060/2658460 (×1.4)

The Box problem is a simplified serial test to explore the parameter space for the
aspect ratio ε and the strength threshold θ. We also performed tests to confirm that,
in all cases, the reduced solver is insensitive to varying the conductivity ratio σnc/σc

in the range [0, 1). In the interest of brevity, and since the results were uniform, we
only report one of these tests in Table 5.7.

We start by running the problems with several different values for the strength
threshold parameter θ for both the reduced and full problems and record the number
of AMG-CG iterations needed. The results in Table 5.2 confirm the stencil analysis
from Section 4.2.1; due to the Neumann boundary conditions in XY, the critical value
for the reduced matrix here is θ > 1/3. Note that when θ is above this threshold,
convergence becomes stable, and for θ = 0.4 the number of AMG-CG iterations is
independent of the element aspect ratios. The critical value for the full problem is
somewhat higher.
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Table 5.2
Solver iteration dependence on the strength threshold θ for the reduced Box problem in XY mode

with conductivity ratio σnc/σc = 0 and varying aspect ratio ε is reported in the original/reduced
format.

1/ε 1 4 16 64 256 1024 4096

θ = 0.33 7/ 7 12/ 8 16/20 35/42 45/57 46/58 46/58
θ = 0.34 7/ 7 12/ 8 16/12 35/ 9 45/ 7 46/ 7 46/ 7
θ = 0.40 7/ 7 12/ 8 16/ 8 35/ 7 45/ 6 46/ 7 46/ 7
θ = 0.50 10/10 12/ 8 12/ 8 11/ 7 11/ 6 11/ 7 11/ 7

Next we explore the run-time behavior in XY with respect to increasing aspect
ratio 1/ε in Table 5.3. Based on Table 5.2, we choose a value of θ = 0.34 for the
reduced matrix and θ = 0.5 for the full matrix to minimize run time for each. We set
σnc/σc = 0 and report the number of CG iterations (nit) as well as the combined time
spent in the solver setup and solution phases (tsolver). The remaining time, including
the matrix assembly, as well as the elimination and the recovery of the internal degrees
of freedom is denoted by (tassemble). For all of these quantities we present the data for
both problems (1.1) and (1.4) in the format “original/reduced”. Finally, we compute
and report the total run time speedup of the computational cycle due to the reduction.

Table 5.3
Comparison of overall solution times for the Box problem in XY mode with strength threshold

θ = 0.34, conductivity ratio σnc/σc = 0 and varying aspect ratio ε. The number of CG iterations
(nit), the solution time (tsolver) and the remaining simulation time (tassemble) are reported in the
original/reduced format.

1/ε nit tassemble tsolver speedup

1 10/ 10 0.29/0.23 0.46/0.25 ×1.6
4 12/ 8 0.28/0.21 0.38/0.14 ×1.8
16 12/ 8 0.28/0.22 0.36/0.15 ×1.8
64 11/ 7 0.28/0.22 0.34/0.14 ×1.7
256 11/ 6 0.27/0.22 0.33/0.12 ×1.8

1024 11/ 7 0.28/0.23 0.33/0.15 ×1.6
4096 11/ 7 0.28/0.23 0.33/0.15 ×1.6

From Table 5.3 we see that the AMG-CG solver performs better on the reduced
problem, both in terms of number of iterations and time. Even when the number of
iterations is the same (ε = 1) there is still a factor of 1.6 speedup (1.8 in the solver).
The speedup factor is nearly constant for all aspect ratios. Note also the interesting
fact that, even with the extra work of inverting the local Aii and the recovery of xi,
the assemble time in Table 5.3 is always less for the reduced problem. This is a trend
in all of our results that we discuss in the following section.

Next, we consider similar tests in the RZ case, where σnc/σc = 0 and we use the
the pure void solution procedure from Section 4.3.1. In other words, we apply AMS
directly to the Schur complement of a singular matrix with a large kernel.

We perform the RZ strength threshold analysis in Table 5.4. Since this problem
has only Dirichlet boundary conditions, the critical value in the subspace problems
according to Section 4.2.1 is θ > 1/6. This is clearly confirmed by the significant
change in the iteration counts shown in the table. Though the convergence is not
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uniform, the dependence on ε is significantly reduced when θ is above the critical
value. Unlike in the XY case, the iteration counts for the original problem remain
high, even for large values of θ. This suggests that the reduced problem has a wider
range of good strength threshold values, making it easier to pick a reasonable choice
for a wider range of problems. When θ is too large, both methods suffer since strong
vertical dependence is lost near the axis of rotation.

Table 5.4
Solver iteration dependence on the strength threshold θ for the reduced Box problem in RZ mode

with conductivity ratio σnc/σc = 0 and varying aspect ratio ε is reported in the original/reduced
format.

1/ε 1 4 16 64 256 1024 4096

θ = 0.16 8/ 8 10/ 8 28/22 75/14 205/24 520/234 835/501
θ = 0.17 8/ 8 10/ 8 28/ 9 74/14 211/24 500/ 30 828/ 33
θ = 0.50 9/ 8 9/ 8 27/ 8 81/ 9 200/15 490/ 26 844/ 27
θ = 0.70 10/10 10/ 8 28/ 7 84/ 7 216/14 594/ 22 694/ 21
θ = 0.90 11/11 10/10 27/10 85/10 246/16 524/ 23 951/ 22

The timing results, presented in Table 5.5, show that the convergence deteriorates
due to vanishing coefficients close to the axis of rotation, but overall the reduced AMS
solver significantly outperforms the solver applied directly to A. In particular, for the
problem with the worse aspect ratio, we get more than a factor of 45 speedup in the
reduced solver leading to more than 39 times total simulation speedup.

Table 5.5
Comparison of overall solution times for the Box problem in RZ mode with strength threshold

θ = 0.7, conductivity ratio σnc/σc = 0 and varying aspect ratio ε. The number of CG iterations
(nit), the solution time (tsolver) and the remaining simulation time (tassemble) are reported in the
original/reduced format.

1/ε nit tassemble tsolver speedup

1 10/10 1.48/0.84 13.5/3.91 ×3.2
4 10/ 8 1.77/0.75 13.7/3.00 ×4.1
16 28/ 7 1.80/0.80 32.4/2.89 ×9.2
64 84/ 7 1.49/0.75 69.5/2.51 ×21.7

256 216/14 1.57/0.76 194./4.43 ×37.6
1024 594/22 1.74/0.74 451./6.25 ×64.7
4096 694/21 0.94/0.75 252./5.61 ×39.8

Finally, we consider the Box problem tests in 3D. In Table 5.6 we investigate both
regular AMS for conductivity jump of four orders of magnitude, as well as the robust
AMS version for the pure void case. We note that there is a little difference between
these cases in terms of solver performance (except that the pure void solver is a bit
slower). This trend is typical for all the experiments we have run. Looking at the
iteration counts in Table 5.6, we see that the convergence deteriorates significantly
on stretched grids. The performance is practically uniform in θ, as the theory from
Section 4.2.1 does not apply in this case. Still, there is a significant improvement due
to the reduction, with speedup factors between 2 and 4.

In Table 5.7 we investigate the dependence of AMS on the magnitude of the
conductivity jump. Note that regular AMS is used in all cases, except σnc = 0, when
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Table 5.6
Comparison of overall solution times for the Box problem in 3D mode with strength threshold

θ = 0.5, two sets of conductivity ratios and varying aspect ratio ε. The number of CG iterations
(nit), the solution time (tsolver) and the remaining simulation time (tassemble) are reported in the
original/reduced format.

1/ε nit tassemble tsolver speedup

σnc/σc = 10−4

1 9/ 8 6.58/5.04 40.3/17.3 ×2.1
2 9/ 8 7.34/5.14 47.6/16.1 ×2.6
4 16/ 9 7.10/5.07 67.6/16.5 ×3.5
8 29/ 15 7.71/5.15 111./23.8 ×4.1

16 49/ 26 7.40/5.15 178./37.1 ×4.4
32 79/ 42 8.15/5.11 262./55.1 ×4.5
64 121/ 66 7.83/4.95 372./85.1 ×4.2
128 180/107 6.66/5.23 546./138. ×3.8

σnc/σc = 0

1 9/ 8 6.30/5.39 53.8/25.1 ×2.0
2 9/ 8 5.88/5.32 51.8/23.4 ×2.0
4 16/ 9 6.15/5.26 72.6/24.8 ×2.6
8 29/ 15 5.95/5.23 117./32.5 ×3.3

16 50/ 26 6.41/5.30 190./54.3 ×3.3
32 79/ 42 6.32/5.31 283./79.2 ×3.4
64 122/ 66 6.02/5.29 440./122. ×3.5
128 177/103 6.60/5.30 657./187. ×3.4

we employ the pure void version from Section 4.3.1. The results clearly show little
dependence on ε → 0 and on σnc/σc → 0. Since the robustness with respect to
conductivity jumps is a main property of AMS for the original problem, the fact that
it gets transfered to the reduced problem is another confirmation of Theorem 4.4.

Table 5.7
Solver iteration dependence on the conductivity ratio σnc/σc = 0 for the reduced Box problem

in 3D mode with strength threshold θ = 0.5 and varying aspect ratio ε.

σnc/σc

1/ε 1 10−2 10−4 10−6 10−8 0

1 8 8 8 8 8 8
2 8 8 8 8 8 8
4 9 9 9 9 9 9
8 15 15 15 15 15 15
16 26 26 26 26 26 26
32 41 42 42 42 42 42
64 59 66 66 66 66 66

128 78 102 107 103 105 103

5.2. Scalability Study - The Coax Problem. We next consider a more realis-
tic problem representing four coaxial cylindrical conductors with varying conductivity



AMG for Linear Systems Obtained by Explicit Element Reduction 23

F

E
J

B

Fig. 5.2. An idealized test problem mocks up the conductivity jumps seen in Z-pinch simula-
tions with four regions of varying conductivity (left). The XY simulations use the top plane, while
in RZ the simulation is cut in XZ plane. The right figure shows the magnitude and direction of the
electric field E, the induced magnetic field B, the current density J , and the force F .

that mock up the variations seen in Z-pinch simulations. The domain is a quarter of
four concentric cylinders with different conductivities σ = {10−2, 10−8, 10−2, 0} from
the inside out. The mesh and an approximate solution are shown in Figure 5.2. The
XY and RZ cases correspond to the top and front sides of the 3D domain. Note that
the jumps in σ and the pure void outer region make this problem’s (near-)nullspace
very challenging, and AMS is required for its robust solution. In these experiments
we used the pure void solution procedure from Section 4.3.1, but we emphasize that
qualitatively similar results are obtained with regular AMS when the pure void is
replaced by a small number.

In fact, the value of supporting pure void regions, with σ = 0, was highlighted
in this problem, since in practice, picking a robust small value for σ is dependent on
the mesh resolution. This fact makes it difficult for users of our target application
to reliably run problems requiring mesh resolution studies, and therefore despite the
extra cost, the pure void solver option is preferable for its robustness.

In this test, we set θ = 0.5, ε = 1, ∆t/µ ∼ 10−4 and use an AMS-CG convergence
tolerance of 10−10. We perform a weak scalability test, increasing the mesh refinement
by a factor of two each step, and increasing the number of processors proportional
to the total number of elements in the problem. Our goal is not to show the full
scalability of the methods but rather to demonstrate their relative performance on
large problems.

We report the number of processors used (np), total problem size (nrows), the
CG iteration counts, the assembly time tassemble, the AMS setup time tsetup, and the
AMS-CG solve time tsolve as well as the total simulation speedup. The results for all
three geometries (XY, RZ, and 3D) are shown in Table 5.8.

The results for the Coax problem are comparable to the Box problem in the
previous section; the problem sizes, number of nonzero matrix entries, iteration counts,
times, and overall speedup all follow the same trends. The matrix reduction is robust
and remains beneficial even for reasonably large number of processors and problem
sizes, with an overall speedup of around a factor of two. For example, the reduced
version of the original 3D problem on 512 processors with more than 100 million
unknowns required 1.4 times less memory and was solved 2.5 times faster.

Overall, the iteration counts for the reduced and the original problems are com-
parable, but the reduced solver is always faster, especially in 3D. The solver setup
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Table 5.8
The matrix sizes, iteration counts, and timings for the Coax problem in all three geometries

(XY, RZ, and 3D) show that the benefits of the matrix reduction extend to more realistic problems.
The results are reported in the original/reduced format.

np nrows nit tassemble tsetup tsolve speedup

XY results

1 15013/7589 13/10 0.13/0.11 0.07/0.03 0.21/0.08 ×1.8
4 59721/30025 14/10 0.14/0.13 0.09/0.05 0.23/0.09 ×1.6
16 238225/119441 15/13 0.15/0.12 0.12/0.08 0.36/0.16 ×1.7
64 951585/476449 17/15 0.21/0.14 0.35/0.19 0.79/0.29 ×2.1

RZ results

1 21720/7320 10/11 0.20/0.12 0.21/0.08 0.57/0.27 ×2.1
4 86640/29040 10/12 0.20/0.11 0.34/0.15 0.84/0.42 ×2.0
16 346080/115680 11/13 0.22/0.13 0.52/0.26 1.42/0.62 ×2.1
64 1383360/461760 12/13 0.23/0.14 1.05/0.63 2.13/1.17 ×2.0

3D results

1 208370/78774 12/10 3.66/2.59 10.0/3.20 23.1/6.83 ×2.9
8 1640728/621224 13/10 4.08/2.80 32.4/6.95 53.2/10.7 ×4.4
64 13021568/4934592 14/11 4.37/3.00 73.1/16.9 89.7/20.6 ×4.1
512 103756864/39337280 15/13 4.53/3.22 122./41.8 149./66.5 ×2.5

time, which accounts for the calculation of the restriction and prolongation operators
and the coarse level matrices in the subspace AMG solvers, is also faster, due to the
reduced problem size and number of matrix entries (which also has beneficial effect
on the cost of the coarse grid matrix construction). Interestingly, the problem assem-
bly time is also faster, despite the additional computations. This effect is especially
striking in RZ, and can be possibly explained by better utilization of the multi-core
architecture we used to run the test problem.

6. Conclusions. The goal of this paper was to characterize the behavior of
algebraic multigrid solvers applied to Schur complements of matrices arising in scalar
and electromagnetic diffusion applications.

We showed that in the particular sub-zonal discretization of interest, the element
reduction approach leads to a smaller dimensional matrix with fewer nonzeros than
the original problem. In the specific application that we considered in Section 2.2, the
typical memory reduction factors were: 1.6 for XY, 2.1 for RZ and 1.4 for 3D. The
corresponding average problem size reduction factors were: 2 for XY, 3 for RZ and 2.6
for 3D. The 3D case was particularly interesting, because it resulted in algebraically
constructed octahedral finite elements.

The good performance of the BoomerAMG and AMS solvers on the reduced
problem was shown to follow from a nullspace reduction property in the classical
AMG case and the reduced HX decomposition proved in Lemma 4.2 in the AMS
case. Stencil analysis on stretched grids indicated that improved Q1 discretization
can be obtained through the reduction process. The fact that the already existing
AMG and AMS codes can be applied directly to the matrix S is a testament to the
power of algebraic solution methods.

The numerical results in Section 5 demonstrated that, even with the elimination
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and the recovery overhead, our new approach solves most of the problems at least
twice as fast, with no dependence on the jumps in σ. In addition, we showed how the
reduction can be easily modified to handle the pure void case. The obtained speedup
factors in the considered simulations were 1.6–2.1 for XY, 2.0–39.8 for RZ and 2.0–
4.4 for 3D. These speedups have been observed to hold for other, more realistic user
problems as well.

A possible extension of this work is to consider algebraic approaches for deter-
mining reduced elements with desirable properties in unstructured settings. Our
experience with the sub-zonal discretization suggests that a good starting point for
electromagnetic problems is to define the reduced elements as the neighborhoods of
the vertices contained in minimal number of edges (cf. Figure 2.3 and Figure 2.4).
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[33] S. Reitzinger and J. Schöberl, An algebraic multigrid method for finite element discretiza-
tions with edge elements, Numer. Linear Algebra Appl., 9 (2002), pp. 223–238.

[34] J. Ruge. private communications.
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[37] K. Stüben, Solving reservoir simulation equations, (2007). 9th International Forum on Reser-

voir Simulation, December 9-13, Abu Dhabi, United Arab Emirates.
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